
XCMD and XFCN: The Magic Hooks That Extend HyperTalk

This documentation by Ted Kaehler, 1 August 1987
For HyperCard 1.0.1
©Apple Computer, Inc. 1987
All Rights Reserved.

Dan Winkler has created an interface that allows powerful new commands to be
added to HyperCard "in the field." When a command in a script cannot be found,
HyperCard looks for a resource of type XCMD with the same name as the unknown
command. Likewise, when a function cannot be found, HyperCard looks for a resource
of type XFCN. Whenever a handler (for a command or function) is not found in a stack
script, HyperCard immediately looks for an XCMD or XFCN in that stack. The total
inheritance order is:

Button (or Field)
Card
Stack
stack XCMD
Home
home XCMD
XCMD in HyperCard application file
HyperCard command

An XCMD or XFCN is a code resource with no header bytes (just like a desk
accessory). You can move them from file to file with ResEdit or with any other
resource moving tool.

The only thing passed into an XCMD or XFCN is a pointer to a XCmdBlock. It looks
like this:

XCmdPtr = ^XCmdBlock;
XCmdBlock =
 RECORD
 paramCount: INTEGER; { the number of arguments}
 params: ARRAY[1..16] OF Handle; { the arguments}
 returnValue: Handle; { the result of this XCMD}
 passFlag: BOOLEAN; { pass the message on?}

 entryPoint: ProcPtr; { call back to HyperCard}
 request: INTEGER; { what you want to do}
 result: INTEGER; { the answer it gives}
 inArgs: ARRAY[1..8] OF LongInt; { args XCMD sends HyperCard}
 outArgs: ARRAY[1..4] OF LongInt; { answer HyperCard sends back}

 END;

You read the arguments (they are handles to zero terminated strings), do whatever the
purpose of this XCMD is, and optionally store a result into returnValue. All data values
going to and from HyperTalk are zero-terminated ASCII strings

Resources of type XCMD are commands, and resources of type XFCN are functions
that return a value. If you store a result string into returnValue in a command, the user
can get it by asking for "the result" (useful for explaining why there was an error). In a
function, you are expected to store the answer into returnValue. If you don't store
anything, the result is the empty string.

If passFlag is false (the normal case), this XCMD or XFCN has handled the message
and the script resumes execution. If passFlag is true, HyperCard searches the
remaining inheritance chain for another handler or XCMD with the same name. This is
just like the "pass" control structure in a script.

The file Flash.p is an example XCMD. It takes one argument which is the ASCII
characters for a decimal integer. It inverts the screen twice the number of times
indicated.

Peek.p is a function (XFCN) that returns the value of any memory location in the
machine (purists avert your eyes).

The second part of the XCmdBlock record has to do with calling HyperCard back in
the middle of your code to ask a question. If you wanted to manage the call to
HyperCard yourself, you would fill inArgs with your arguments, put a request code in
request, and JSR to the address in entryPoint. HyperCard returns the values you
requested in outArgs and a result code in result.

Dan Winkler has packaged the entire range of calls on HyperCard, so that if you are
using Pascal, you can simply call a procedure. Both Peek and Flash use some
conversion routines that Dan has kindly supplied. The file XCmdGlue.inc has the glue
procedures. Handle is always a handle to a zero-terminated string. If a handle is
returned, you are responsible for disposing it. The calls are:

PROCEDURE SendCardMessage(msg: Str255);
{Send a HyperCard message (a command with arguments) to the current card.}

FUNCTION EvalExpr(expr: Str255): Handle;
{Evaluate a HyperCard expression and return the answer. The answer is a handle to a
zero-terminated string.}

FUNCTION StringLength(strPtr: Ptr): LongInt;

{Count the characters from where strPtr points until the next zero byte. Does not count
the zero itself. strPtr must be a zero-terminated string.}

FUNCTION StringMatch(pattern: Str255; target: Ptr): Ptr;
{Perform case-insensitive match looking for pattern anywhere in target, returning a
pointer to first character of the first match, in target or NIL if no match found. pattern is
a Pascal string, and target is a zero-terminated string.}

PROCEDURE SendHCMessage(msg: Str255);
{Send a HyperCard message (a command with arguments) to HyperCard.}

PROCEDURE ZeroBytes(dstPtr: Ptr; longCount: LongInt);
{Write zeros into memory starting at dstPtr and going for longCount number of bytes.}

FUNCTION PasToZero(str: Str255): Handle;
{Convert a Pascal string to a zero-terminated string. Returns a handle to a new zero-
terminated string. The caller must dispose the handle.}

PROCEDURE ZeroToPas(zeroStr: Ptr; VAR pasStr: Str255);
{Fill the Pascal string with the contents of the zero-terminated string. You create the
Pascal string and pass it in as a VAR parameter. Useful for converting the arguments
of any XCMD to Pascal strings.}

FUNCTION StrToLong(str: Str31): LongInt;
{Convert a string of ASCII decimal digits to an unsigned long integer.}

FUNCTION StrToNum(str: Str31): LongInt;
{Convert a string of ASCII decimal digits to a signed long integer.
Negative sign is allowed.}

FUNCTION StrToBool(str: Str31): BOOLEAN;
{Convert the Pascal strings 'true' and 'false' to booleans.}

FUNCTION StrToExt(str: Str31): Extended;
{Convert a string of ASCII decimal digits to an extended long integer.} VAR x:
Extended;

FUNCTION LongToStr(posNum: LongInt): Str31;
{Convert an unsigned long integer to a Pascal string.}

FUNCTION NumToStr(num: LongInt): Str31;
{Convert a signed long integer to a Pascal string.}

FUNCTION NumToHex(num: LongInt; nDigits: INTEGER): Str31;

{Convert an unsigned long integer to a hexadecimal number and put it
into a Pascal string.}

FUNCTION BoolToStr(bool: BOOLEAN): Str31;
{Convert a BOOLEAN to 'true' or 'false'.}
VAR str: Str31;

FUNCTION ExtToStr(num: Extended): Str31;
{Convert an extended long integer to decimal digits in a string.}

FUNCTION GetGlobal(globName: Str255): Handle;
{Return a handle to a zero-terminated string containing the value of the specified
HyperTalk global variable.}

PROCEDURE SetGlobal(globName: Str255; globValue: Handle);
{Set the value of the specified HyperTalk global variable to be the zero-terminated
string in globValue. The contents of the Handle are copied, so you must still dispose it
afterwards.}

FUNCTION GetFieldByName(cardFieldFlag: BOOLEAN; fieldName: Str255): Handle;
{Return a handle to a zero-terminated string containing the value of field fieldName on
the current card. You must dispose the handle.cardFieldFlag set to false indicates
background, instead of card, field.}

FUNCTION GetFieldByNum(cardFieldFlag: BOOLEAN; fieldNum: INTEGER): Handle;
{Return a handle to a zero-terminated string containing the value of field fieldNum on
the current card. You must dispose the handle.}

FUNCTION GetFieldByID(cardFieldFlag: BOOLEAN; fieldID: INTEGER): Handle;
{Return a handle to a zero-terminated string containing the value of the field while ID is
fieldID. You must dispose the handle.}

PROCEDURE SetFieldByName(cardFieldFlag: BOOLEAN; fieldName: Str255;
fieldVal: Handle);
{Set the value of field fieldName to be the zero-terminated string in fieldVal. The
contents of the Handle are copied, so you must still dispose it afterwards.}

PROCEDURE SetFieldByNum(cardFieldFlag: BOOLEAN; fieldNum: INTEGER;
fieldVal: Handle);
{Set the value of field fieldNum to be the zero-terminated string in fieldVal. The
contents of the Handle are copied, so you must still dispose it afterwards.}

PROCEDURE SetFieldByID(cardFieldFlag:BOOLEAN; fieldID: INTEGER; fieldVal:
Handle);

{Set the value of the field whose ID is fieldID to be the zero-terminated string in
fieldVal. The contents of the Handle are copied, so you must still dispose it
afterwards.}

FUNCTION StringEqual(str1,str2: Str255): BOOLEAN;
{Return true if the two strings have the same characters. Case insensitive compare of
the strings.}

PROCEDURE ReturnToPas(zeroStr: Ptr; VAR pasStr: Str255);
{zeroStr points into a zero-terminated string. Collect the characters from there to the
next carriage Return and return them in the Pascal string pasStr. If a Return is not
found, collect chars until the end of the string.}

PROCEDURE ScanToReturn(VAR scanPtr: Ptr);
{Move the pointer scanPtr along a zero-terminated string until it points at a Return
character or a zero byte.}

PROCEDURE ScanToZero(VAR scanPtr: Ptr);
{Move the pointer scanPtr along a zero-terminated string until it points at a zero byte.}

Here are the files you will need:

HyperXCmd.p XCmdGlue.inc
Flash.p (An example command to see how everything is really done.)
Peek.p (An example function to see how everything is really done.)

Here are the typical MPW commands for compiling an XCMD :

 pascal -w PioneerLVP4200.p link -m ENTRYPOINT -o Video -rt
 XCMD=15 -sn Main=PioneerLVP4200
∂
 PioneerLVP4200.p.o "{MPW}" Libraries:interface.o

"Video" is the stack that MPW will install the XCMD in. If you don't use any of the
routines in interface.o, its just:

 pascal Flash.p
 link -o HyperCommands -rt XCMD=0 -sn Main=Flash Flash.p.o

After executing these, use ResEdit to move the XCMD or XFCN to the proper stack.

For "C" programmers, the author has provided a definition (HyperXCmd.h) and an
include file (XCmdGlue.inc.c) and an example (CFlash.c).

Breakpoints do not appear to work in XCMDs, but putting a debugger call in your code
does work. In addition, saying:

 hd 'h'

in MacsBug allows you to find your resource in memory by seeing its name and
location in the listing.

